充圆编码器

CY 2444

转速传感器和位置传感器

技术信息 版本V.02 **2022-06**

充圆编码器带有轴向电缆出线

概述

- ▶ 测量体系由一个充圆编码器和一个用于安装在 轴上的精密测量齿轮组成。
- ▶ 充圆编码器无接触地扫描带有磁阻传感器的精密 测量齿轮并测定旋转方向、转速和位置。

属性

- ► 输出信号电平 1V_{pp}差分信号(Sin/cos) 或TTL / RS422
- ▶ 模拟或数字基准脉冲
- ▶ 可以用于提高每旋转一圈的脉冲数的可选插补数
- ▶ 可以记录温度和转速矩阵图以及自动调整
- ▶ 频率范围: 0-500 kHz⁽¹⁾
- ▶ 温度范围-40度至+120度
- ▶ 保护等级IP 68
- ▶ 认证安全集成(信号模型 K)

优势

- ▶ 免保养和无磨损
- ▶ 低温度波动和高信号质量
- ▶ 通过全屏蔽式金属壳体实现最高的抗干扰强度
- ▶ 通过定制客户专属的精密测量齿轮实现高度的设计灵活性

应用领域

- ▶ 机床制造
 - HSC(高速切割)轴中的位置和转速测量
 - 真空泵中定位螺钉的电子同步
 - 车床、磨床和铣床上的
 - 位置和转速测量
- ▶ 试验台和电机(混合动力驱动装置、起动转矩机) 中的转数和位置测量

结构

充圆编码器用于非接触式测量旋转运动或纵向运动,主要应用于机器、传动装置、电机或者高速轴中。它们采用最先 进的微系统技术进行制造和全灌封。因此,它们能够能够经受住冲击和振动。

测量系统

测量系统由一个充圆编码器和一个精密测量齿轮构成。此外,该系统不自带轴承结构,因为精密测量齿轮被直接安装到轴上。测量系统采用非接触式工作并且免维护且不发生磨损。它可测量旋转轴的旋转方向、转速和位置。精密测量齿轮由铁磁材料制成,必须单独订购。充圆编码器拥有一个磁场,它会因旋转的精密测量齿轮而发生变化。传感技术测定磁场的变化情况。内置的电子装置将这种变化转化为相应输出信号。一个外部电子设备可以扫入输出信号并且测量出轴的旋转方向、转速和位置。对于非接触式测量来说,一个在精密测量齿轮和充圆编码器间界定的气隙是必要的。为了简化安装,还随充圆编码器提供相应的间隔规。

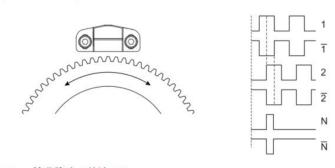
基准点

充圆编码器 可以通过测定基准点确定轴位置。 其作用相当于模拟或数字差分脉冲(轨迹 N)。 充圆编码器 评估以下基准点:

切槽 (M)、簧片 (N)、齿 (Z)、缝隙(G)之间的差值 分析测量齿轮中损坏 情况的识别码。

模数

可选模数: 方案 0.3 /方案 0.4 /方案 0.5 之间的 差值分析测量齿轮中损坏情况的识别码。

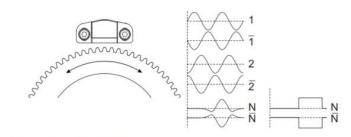


订购的充圆编码器必须符合基准点规格 和测量齿轮的模数。

信号模型

信号模型 T

输出信号是用于方向识别的两个相位偏置90度 的方 波信号(轨迹 1 和 2)和它们的反相信号。



N* 基准脉冲(轨迹 N)

信号模型 K

输出信号是用于方向识别的两个相位偏置 90度的正 弦信号

(轨迹 1和 2)和它们的反相信号。

N* 基准脉冲(轨迹 N)可选

充圆编码器电缆出口

可供应带以下电缆出口的充圆编码器:

径向 R

轴向 **G**

右切向 **T**

左切向 L

方波分割倍数信号模型T

插补系数 (1/2/4/8/A/B/C/D/G) 直接在充圆编码器 上进行插补。 在使用带 250 个齿且插补系数为20的测量齿轮时, 充圆编码器会产生5000 个方波信号。

弦波信号模型K

内部调节系统(R)

当气隙和温度发生变化时,充圆编码器调节正弦/余弦振幅的波动。由此显著降低安装成本。不必为了实现最佳信号而调整充圆编码器。

可设定参数(P)

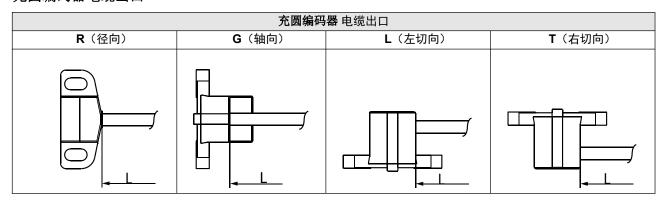
通过连接插头设定充圆编码器的参数

- ▶ 无需重新机械调整气隙,即可调整正弦/余弦振幅
- ▶ 消除偏移和振幅误差来补偿安装公差
- ▶ 确定转速范围
- ▶ 输入主轴序列号(驱动装置的分配)

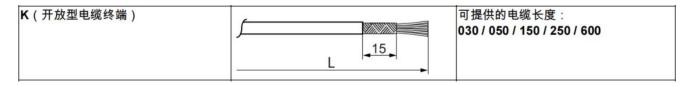
另外,各种数据被存储在充圆编码器中,可以用专有设备 读出:

- ▶ 用于驱动装置使用条件分析的转速矩阵图
- ▶ 启动次数
- ▶ 充圆编码器的最小/最大温度
- ▶ 充圆编码器的商品编号和序列号
- ▶ 自上次配置以来的总运行时间和时间

充圆编码器**可以通过测试仪和编程设备进行调整、分析和配置**。


技术数据

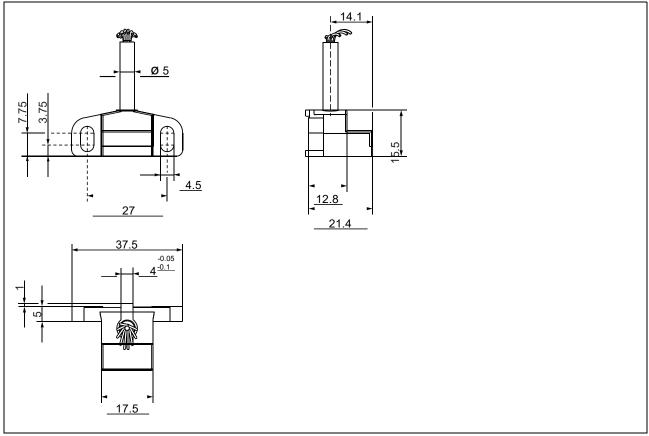
	CY 2444_3	CY 2444_4	CY 2444_ 5	
测量齿轮				
模数 ⁽¹⁾	0.3	0.4	0.5	
测量轨迹的宽度	≥ 4.0 mm			
材料	铁磁性钢			
基准点	切槽 (M)、簧片 (N)、齿上齿 (Z)、缝	隙 (G)、齿 (V)	
几何数据				
传感器元件之间的中心距离(1/2 和 N)c ₂	6 mm			
装配面与传感器元件的间距 (1/2) c ₁	9.5 mm			
许可的气隙	0.15 ± 0.02 mm	0.15 ± 0.03 mm	0.20 ± 0.03 mm	
电气数据				
电源电压 U _B	5 V DC ± 5%,防	逆极性、防电压突增		
输出电平				
CY 2444K	1 V _{pp} 差分信号			
CY 2444T	TTL / RS422			
输出信号 CY 2444K	一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	弦信马和克 伯的反射	1信号 吃玩效。	
CY 2444T		 → 两个偏置 90度 正弦信号和它们的反相信号,防短路; → 两个偏置 90度 的方波信号和它们的反相信号,防短路;		
输出频率	0500 kHz ⁽²⁾			
无负荷时的功率消耗	≤ 0.3 W	≤ 0.3 W		
电磁兼容性				
干扰发送	DIN EN 61000-6-4	4:2011-09; DIN EN 6	1000-6-3:2011-09	
抗干扰强度		DIN EN 61000-6-2:2006-03; DIN EN 61000-6-1:2007-10		
绝缘强度	500 V, 根据 DIN	500 V,根据 DIN EN 60439?1		
机械数据				
质量		30 g		
外壳材料		特硬工程塑料		
工作温度范围		-30 °C 至 +85度		
运行温度及存放温度范围		-40°C 至 +120度		
保护等级		IP 68		
耐振性	,	200 m/s²,根据 DIN EN 60068-2-6		
抗冲击性 	,	DIN EN 60068-2-27		
MTTF FIT		55 °C 时为 5,000,000 h 55 °C 时为 204 10 ⁻⁹ h ⁻¹		
电气连接	55 6 附分 204 1	U · 11 ·		
芯数 x 芯横截面	8 x 0.15 mm ²			
许可的最大电缆长度	100 m ⁽³⁾			
电缆直径	5 mm			
最小弯曲半径	25 mm			
取小弓曲干饪	Z5 IIIM			


⁽¹⁾ 其它模数敬请咨询

⁽²⁾ 更高频率请咨询 (3) 注意供电线路上的压降

充圆编码器电缆出口

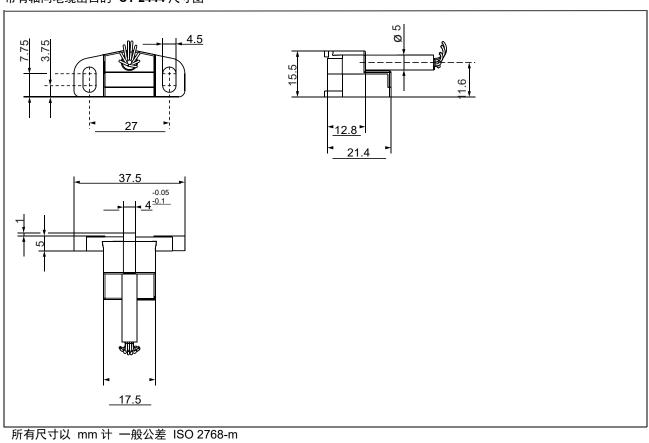
接口类型(暂只提供K类型,其余需订制)

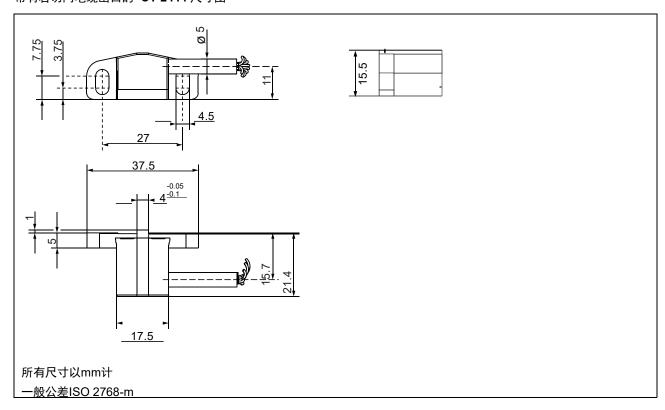


信号接口定义

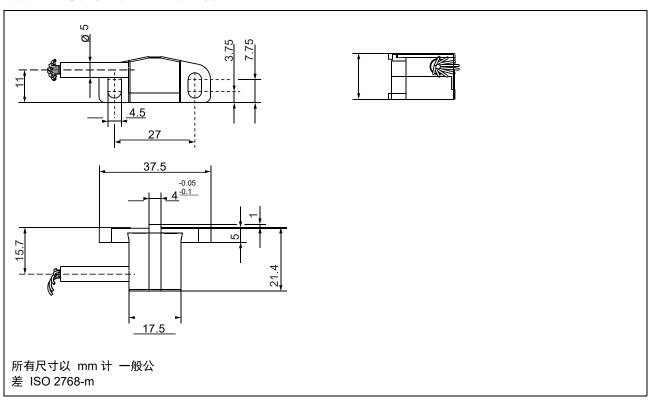
开放型电缆终端	线芯的颜色	信号/功能	
	绿色	U ₁₊	轨迹1信号
	黄色	U ₁₋	轨迹1反相信号
	灰色	U _{N+}	基准轨迹N信号
	白色	0 V	GND
4.5	棕色	U _B	+5 V电源电压
-15 →	蓝色	U ₂₊	轨迹2信号
	红色	U ₂₋	轨迹2反相信号
	粉色	U _{N-}	基准轨迹N反相信号

尺寸图


带有径向电缆出口的 CY 2444 尺寸图


所有尺寸以 mm 计

一般公差ISO 2768-m


带有轴向电缆出口的 CY 2444 尺寸图

带有右切向电缆出口的 CY 2444 尺寸图

带有左切向电缆出口的 CY 2444 尺寸图

对测量齿轮的解释

测量齿轮

充圆编码器与测量齿轮构成一个单元,用于测量旋转运动。 测量齿轮尺寸及直径直接由模数和齿数决定。

标准测量齿轮 可以立即从工厂供应标准测量齿轮。详细说明 和结构设计参

见技术信息 ZAx / ZFx。

客户专属的测量齿轮 根据客户要求生产个性化的客户专属测量齿轮。请将您的测

量齿轮设计图(最好是 dxf 格式)发送到:

info@keod-3d.com.

基准点

充圆编码器可以检测切槽、簧片或轮齿形式的基准点。所 测定的脉冲可以被用作设定基准位置。这对于诸如自动将模 具转换到铣削或磨削主轴上来说非常必要。 基准点的选择由所使用的测量齿轮的尺寸和转速决定,因为这两个数值可以影响基准点上的受力大小。当进行新设计时,我们推荐使用一个带有**Z** 基准点的测量齿轮。

基准点 N-簧片

将探测出集成在测量齿轮中的金属簧片,其位置在两齿的正中间,簧片必须采用铁磁材料制成并且不能超出测量齿轮的齿顶圆。根据基准簧片上的受力,只允许在严格限制的转速范围内使用该型号。

基准点 M - 切槽

充圆编码器 将检测位于两个齿之间的基准切槽。出于技术原因,测量齿轮是由两个部分组合而成。

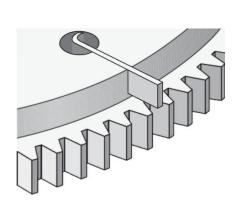
基准点 Z-齿上齿

这种测量齿轮由一个组件制成, 齿对齿咬合。

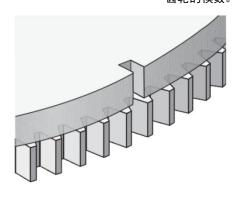
基准点 G-缝隙

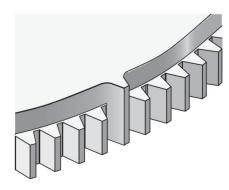
这种测量齿轮由一个组件制成。

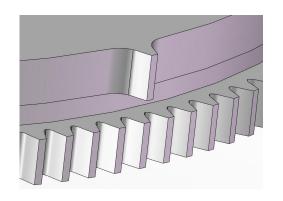
基准点 V-单齿

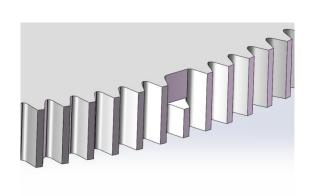

结构上与基准点Z类似,但基准轨迹的单齿不与信号轨迹的 齿相连。

模数

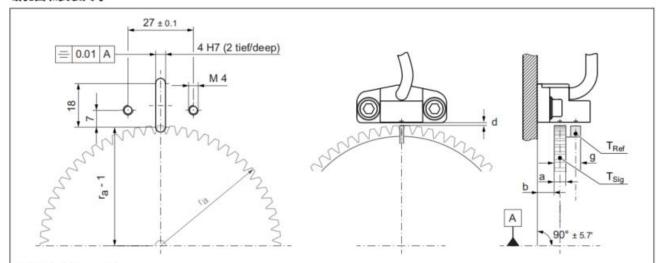

这个模数是齿轮的一个啮合值,描述齿数和直径之间的关系。 当齿数相同时,模数越小,外径也越小。


订购的充圆编码器必须符合基准点规格和测量 齿轮的模数。


N = 基准点 - 簧片


M = 基准点 - 切槽

Z =基准点 - 齿上齿


V=基准点 - 单齿(不与信号轨迹的齿相连)

G=基准点 - 缝隙

钻孔图和安装尺寸、气隙表

钻孔图和安装尺寸

所有尺寸以 mm 计

a 信号轨迹的宽度: ≥ 4.0 mm

b 装配面与齿轮的间距:取决于测量齿轮的几何形状(例如:信号轨迹的宽度)

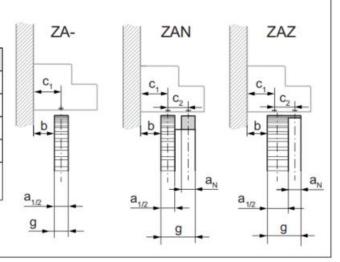
d 气隙:取决于模数(参见气隙表)

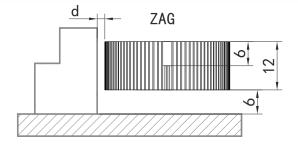
g 测量齿轮的宽度

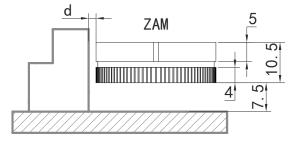
 $r_a = d_a/2 (d_a = 齿轮的齿顶圆直径)$

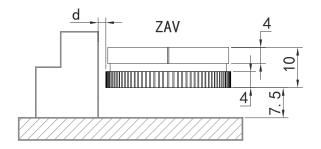
T_{Ref} 基准轨迹 T_{Sig} 信号轨迹

标准测量齿轮的安装尺寸

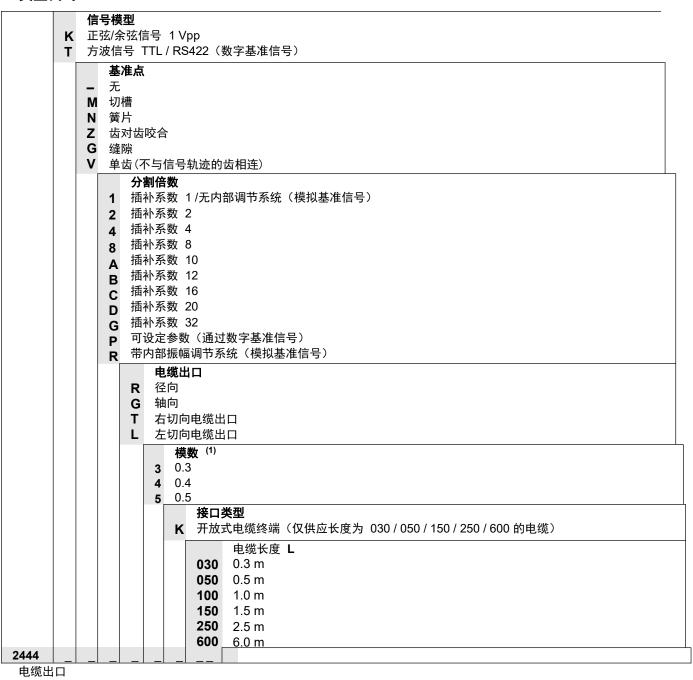

尺寸	ZA-	ZAN	ZAZ
g	4	10	10
a _{1/2}	4	4	6
a _N	-	4	4
b	7.5 ± 0.5	7.5 ± 0.5	7.5 ± 0.5


传感器元件的位置:


 $c_1 = 9.5 \text{ mm}$; $c_2 = 6 \text{ mm}$


所有尺寸以 mm 计

一般公差 ISO 2768-m



模数	气隙d	间距公差
0.3	0.15mm	\pm 0.02mm
0.4	0.15mm	±0.03mm
0.5	0.20mm	±0.03mm

类型代码 CY 2444

右切向 **7**

左切向 L

在安全应用中的使用

信号模型、分割倍数和基准点

信号模型	分割倍数	基准点		备注
		信号波形	基准点	
К	1	模拟	-/M/N/Z	无振幅调节系统
	R	模拟	—/M/N/Z	有振幅调节系统
	Р	数字的	—/M/N/Z	可设置参数
Т	1/2/4/8/A/B/C/D/G	数字的	—/M/N/Z	插补系数

缺陷检测对安全功能的可用性有实质性影响。它必须通过控 制系统来实现,因为传感器自身未集成任何缺陷监测功能。

整个系统的安全 动力总成和机器的安全性评估 只能由机器制造商 在遵守相关的指令、标准和安全规定的条件下执行。

$MTTF_d^{(1)}$

可以简单假定: 只有50 % 的电子元件硬件故障将带来危险。 $MTTF_d$ 数值通常被定为 MTTF 值的两倍 $^{(2)}$

(来源: EN ISO 13849-1:2008 (D); 附件 C, 第 5.2 章半导体; EN 61800-5-2:2007, 附件 B, 第 3.1.3 章安全故障的比例)。

此外, 须注意所需的应用温度。

$PFH_d^{(3)}$

性能水平或者安全完整性等级并非关于子部件的可靠性,而 是涉及安全功能的可用性。

传感器的 MTTFd 值也与此相关。

受温度影响的特性值

应用温度 [度]	FIT [10 ⁻⁹ h ⁻¹] ⁽⁴⁾	MTTF [h] ⁽²⁾
85	1611	620732
75	805	1242236
65	402	2487562
55	204	5000000
45	105	9523810

安全集成

带正弦/余弦信号的充圆编码器(信号模型 **K**)由 IFA 采用 西门子 Sinumerik 控制系统按照安全集成要求进行检验。

IFA 的评估

(IFA 检验报告编号: 2013 23874):

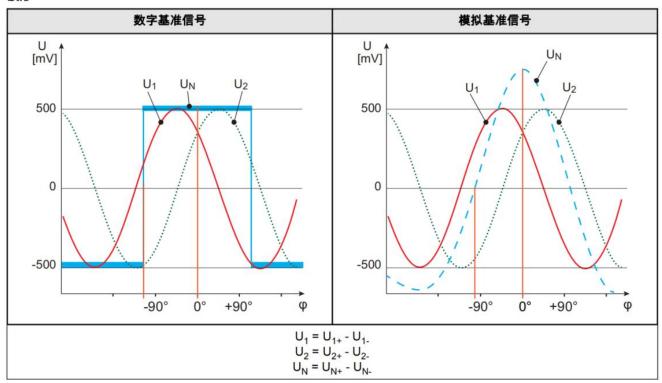
"本传感器适用于输出两个独立的转速信息。通过在 Sinumerik 控制系统中检测缺陷,只需在安全应用中使用一 个传感器。

其他制造商的控制系统 使用其他制造商配备安全功能的控制系统时,须与使用Sinumerik 一样在控制系统中执行缺陷检测:

- ▶ 通过在后续控制系统中监测差分正弦/余弦信号,识别编码器功能上存在的缺陷。对此,须检验正弦/余弦信号的振幅、频率、偏移或者相位的可信度。
- ▶ 须通过积极连接测量齿轮等方法,避免其在运行过程中或者停机时从轴上机械性滑脱或者脱开。

使用正弦形传感器信号时,通过控制系统实现的部分缺陷检测措施已在 DIN EN 61800-5-2 表 16 (用于速度可调式电力驱动系统)中列出。

⁽¹⁾ 危险平均失效时间;从中间运行时间到可产生危险的失效时间


⁽²⁾ 平均失效时间; 从中间运行时间到失效时间

⁽³⁾ 每小时的危险故障概率;产生一次危险事件的平均概率

⁽⁴⁾ 故障次数; 故障率, 即每 10⁹ 小时的故障数

数字基准信号(充圆出厂标准)

波形

对于数字基准信号:

- ▶ 基准信号的振幅高度与气隙无关,理想情况下设置到 +500 mV。
- ▶ 开路电压的偏移电平固定设置到 -500 mV,以产生高信噪比。

综述

使用 $1-V_{DD}$ 接口时,两种信号波形均符合基准信号的通用规范。